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A study is made of the nonstationary heat conduction of a three-dimensional body with an uneven inclusion
mated with the matrix by an ideal thermal contact. Using thermal potential determined and studied on uneven
surfaces, the problem has been reduced to an unconditionally solvable system of integral equations. The re-
sults have been illustrated with an example of sudden heating of a body with a circular conic inclusion.

Formulation of the Problem. Stationary temperature fields of two-dimensional and three-dimensional bodies
with uneven (rough) inclusions have been studied in [1–4] based on the methods developed in [5–7]. We investigate
the nonstationary heat conduction of a three-dimensional body with an uneven inclusion mated with the matrix by an
ideal thermal contact. Let the unbounded body contain an uneven inclusion occupying a finite simply connected region
V1 and the inclusion surface S contain noninteracting smooth singular lines (sets of angular points) and conic points.
The inclusion is mated with the matrix by an ideal thermal contact, and the composite is exposed to external nonsta-
tionary thermal actions. We find the temperature field of the composite.

We construct the solutions Tj = Tj(x, y, z, t) of the nonstationary heat-conduction equation [8]

∇ 2
Tj − aj

2
 
∂Tj

∂t
 = fj (x, y, z, t) (1)

with initial conditions

Tj (x, y, z, t) t=0 = 0 (2)

and the following mating conditions on the surface S [8]:
at the points of smoothness

T0
−
 (x, y, z, t) − T1

+
 (x, y, z, t) = 0 ,   λ0 

∂T0
−
 (x, y, z, t)
∂n

 − λ1 
∂T1

+
 (x, y, z, t)
∂n

 = 0 ; (3)

at the singular points M0(x0, y0, z0)

  lim
M→ M0

  [T0
−
 (x, y, z, t) − T1

+
 (x, y, z, t)] = 0 ,

  lim
M→ M0

   



λ0 

∂T0
−
 (x, y, z, t)
∂n

 − λ1 
∂T1

+
 (x, y, z, t)
∂n




 = 0 .

(4)

Here the subscripts j = 0 and 1 refer to quantities in the regions V0 = R3\V1 (R3 is the three-dimensional space) and

V1; n is the normal to the surface S (the normal is external in relation to the region V1; the superscripts % mean the
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boundary values of the quantities, as the point M(x, y, z) approaches the surface S from the regions V1 ("+" sign) or

V0 ("−" sign); aj
2 = 

1

κj
; κj = 

λj

cjρj
; cj and ρj are the specific heat and the density.

At the singular points M0, the fulfillment of the heat-conduction equation is understood in the sense of reali-
zation of the equality [9]

   lim
∆V→ M0

   ∫∫∫ 
∆V

[∇ 2
Tj − aj

2∂Tj
 ⁄ ∂t − fj (x, y, z, t)] dv = 0 , (5)

i.e., of the conservation of thermal balance upon the contraction of the elementary region ∆V to the singular point
M0.

Temperature Fields. We determine the behavior of the solution of the nonstationary heat-conduction equation
(1) in the vicinity of the singular points of the mating surface S. The homogeneous equation corresponding to (1) is
invariant relative to the transformation

x = Bx1 ,   y = By1 ,   z = Bz1 ,   t = B
2
t1 ,   x = Bx1

(B is an arbitrary real number). With allowance for the linearity of mating conditions (3) and (4) and the homogeneity
of initial condition (2), the solution of the problem is found from the functional equation

Tj (x, y, z, t) = A (B) Tj (Bx, By, Bz, B
2
t) , (6)

where the quantity A is a function of B. Differentiating relation (6) with respect to B and introducing the notation K

= − 
B
A

 
dA
dB

, we obtain the equation

(grad Tj, r) + 2t 
∂Tj

∂t
 = KTj ,

whose solution determines the class of solutions of the heat-conduction equation

Tj = x
mϕj 





x
y
, 

x
z
, 

x
√ t



 . (7)

Let the interface S of the regions contain a smooth singular line. We write the representation (7) in the local
coordinates ρ, θ, s connected with the singular line [7]. Satisfying relation (5) using the found Tj, we arrive at the
governing equation for Tj, coincident with the corresponding equation for the harmonic function, and the known as-
ymptotics [7]. In the case of a conic point, we assure ourselves, passing, in (7), to the curvilinear orthogonal coordi-
nates ρ1, θ1, s1 connected with this point [7], that the asymptotics of the solution of the homogeneous nonstationary
heat-conduction equation and the asymptotics of the corresponding harmonic function coincide.

Thus, it has been established that the asymptotics of solutions of the nonstationary homogeneous heat-conduc-
tion equation corresponding to (1) and to mating conditions (3) and (4) in the vicinity of the singular points of the
mating surface coincides with the asymptotics of harmonic functions with the same mating conditions [7]. Therefore,
the distributions of the nonstationary temperature and the components of the heat-flux density as well as the formulas
for computation of the intensity coefficients have the form given in [1]. It is noteworthy that an analogous circum-
stance holds for the wave Lamé equation [10].

The solution of Eq. (1) represents the sum of thermal potentials of the single and double layers [11] and the
volume [12]. To solve the problem we must study the conditions of existence and the properties of the potentials in
the case of uneven surfaces. If the density µ2(M, t) of the thermal potential of the double layer W(M, t) is a continu-
ous function at the points of smoothness M(x, y, z) of the surface S, is equal to zero at the singular points of the sur-
face M0(x0, y0, z0), and has the asymptotics
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µ2 (M, t) = O ( MM0
α) ,   α 2 (0, 1) ,   t 2 (0, ∞) , (8)

in their vicinity, the thermal potential exists, satisfies the homogeneous nonstationary heat-conduction equation, and, at
the points of smoothness M, we have the known representation for its boundary values

W
%

 (M, t) = % 2πµ2 (M, t) + W (M, t) , (9)

where W(M, t) is the direct value of the potential and W%(M, t) are its boundary values, as the point of smoothness
of the surface is approached along the external normal n from the region V1 ("+" sign) or V2 ("−" sign).

Indeed, let the surface S contain one smooth singular line. We surround this line with a tubular surface Sl of
radius l. As a result, the surface S will be broken into the surfaces S(1) and S(2) lying inside the tubular surface and
outside it. We write the thermal potential of the double layer as the sum

W (M, t) = ∫ 
0

t

dτ ∫
S
(1)
∫ µ2 (N, τ) K2 (M, N, t, τ) dsN + ∫ 

0

t

dτ ∫
S
(2)
∫ µ2 (N, τ) K2 (M, N, t, τ) dsN , (10)

where the kernel is

K2 (M, N, t, τ) = 
∂
∂n

 K1 (M, N, t, τ) ,

K1 (M, N, t, τ) = 
a

2 √π  (t − τ)3
 ⁄ 2

 exp 



− 

r
2
a

2

4 (t − τ)




 ,   r =  MN  .

The second term of the right-hand side of equality (10) represents the thermal potential of the double layer on
Lyapunov’s open surface, and its boundary values at the points of smoothness M 2 S(2) are as follows [11]:







∫ 
0

t

dτ ∫
S
(2)
∫ µ2 (N, τ) K2 (M, N, t, τ) dsN







M

%

 = % 2πµ2 (M, t) + ∫ 
0

t

dτ ∫
S
(2)
∫ µ2 (N, τ) K2 (M, N, t, τ) dsN . (11)

The first term in (10), which is computed at M 2 S(2) as an improper integral with the use of the local coor-
dinates ρ, s connected with the singular line [7] and with account for (8), is a continuous function in passage of the
point M through the surface S(2). Therefore, equalities (10) and (11) yield the truth of the representation (9).

In the case of a conic singular point, the proof is constructed according to the scheme presented above with
the use of the local coordinates connected with such a point [7]. The proof for a finite number of nonintersecting
smooth singular lines and conic points not belonging to them is analogous. Direct substitution of the expression for
the double-layer potential into the homogeneous equation corresponding to (1) shows that it is satisfied outside the
surface S.

If the density µ1(M, t) of the thermal potential of the single layer V(M, t) is a continuous function at the
points of smoothness of the surface S and, at the singular points M, tends to infinity with the asymptotics

µ1 (M, t) = O 


1

 MM0
α



 ,   α 2 (0, 1) ,   t 2 (0, ∞) , (12)

the thermal potential of the single layer exists, satisfies the homogeneous heat-conduction equation, and is a continuous
function at the points of smoothness of the surface S. We have the known representation for the boundary values of
the normal derivative of the potential
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∂
∂n

 V (M, t)




%

 = % 2πµ1 (M, t) + 
∂
∂n

V (M, t) , (13)

where 
∂
∂n

 V(M, t) is the direct value of the normal derivative of the thermal potential of the single layer.

Indeed, let the surface contain a singular line. Analogously to the previous proof for the surface S =
S(1) 2 S(2), we have

V (M, t) = ∫ 
0

t

dτ ∫
S
(1)
∫ µ1 (N, τ) K1 (M, N, t, τ) dsN + ∫ 

0

t

dτ ∫
S
(2)
∫ µ1 (N, τ) K1 (M, N, t, τ) dsN . (14)

The first integral on the right-hand side of (14) exists and represents the thermal potential of the single layer on
Lyapunov’s open surface [11], whereas the second integral, on passage to the variables ρ and s determined by the sin-
gular line [7] and with account for condition (12), is computed as the improper one. As the point of smoothness
passes through the surface S(2), the second term of the right-hand side of (14) is continuous as the potential of the
single layer on Lyapunov’s open surface [11] and the first term at M 2/  S(1) is a continuous function. Therefore, the
potential V(M, t) represents a continuous function upon passage of the point of smoothness through the surface S.

The normal derivative of equality (14) with account for the known boundary values of the normal derivative
of the thermal potential of the single layer on Lyapunov’s open surface [11] and for the continuity of the normal de-
rivative of the first term of the right-hand side of (14) at M 2/  S(1) has boundary values determined by formula (13).

The proof in the case of a conic point and a finite number of smooth nonintersecting singular lines and conic
points not belonging to them is analogous. Substitution of the expression for the single-layer thermal potential into the
homogeneous nonstationary heat-conduction equation shows that it is satisfied.

An analog of the Lyapunov–Tauber theorem holds, namely: if the density of the double-layer thermal potential
satisfies conditions (8) and the limiting value of the normal derivative of the thermal potential exists at the point of
smoothness on one side of the mating surface S, it also exists on the other side and the equality





∂
∂n

 W (M, t)




+

 =  




∂
∂n

 W (M, t)




−

 . (15)

holds. Indeed, we consider the case where a singular point is present on the mating surface S. Separating, as has been
described above, the surfaces S(1) and S(2), based on equality (10) we obtain

∂
∂n

 W (M, t) = 
∂
∂n

 






∫ 
0

t

dτ ∫
S
(1)
∫ µ1 (N, τ) K1 (M, N, t, τ) dsN







 + 

∂
∂n

 






∫ 
0

t

dτ ∫
S
(2)
∫ µ1 (N, τ) K1 (M, N, t, τ) dsN







 . (16)

The second term on the right-hand side of relation (16) has the character of a normal derivative of the double-layer
thermal potential on Lyapunov’s open surface ([13], p. 91), i.e., if the limiting value of the term exists on one side of
the surface S(2), the limiting value equal to it exists on the other side. The first integral on the right-hand side of (16)
is computed with the use of the variables ρ and s [7] as the singular integral which is a continuous function in pas-
sage of the point of smoothness through the surface S(2); this yields the truth of the theorem. The proof in the case
of a conic point and a finite number of nonintersecting singular points and conic points not belonging to them is
analogous.

If the singular characteristic equations determined by conic points [7] have positive roots less than unity at

these points, the quantity m = 
π

2π − ω
 < 1 (0 ≤ ω < π), where ω is the apex angle of the mating surface in the plane

normal to the singular line from the external normal, and the right-hand sides of Eqs. (1) fj(x, y, z, t) (j = 0, 1
___

) are
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bounded in the corresponding regions Vj, then the problem of nonstationary heat-conduction (1)–(5) is unconditionally

solvable.
We represent the temperature fields as the sum of the singular and regular components:

Tj (M, t) = Tj1 (M, t) + Tj2 (M, t)     (j = 0, 1
___

) . (17)

We write the singular components in the form of the sum of the thermal potentials of the single and double layers:

Tj1 (M, t) = Vj1 (M, t) + Wj1 (M, t) (18)

with densities µj1(N) and µj2(N), respectively, which, in view of the presence of the positive roots of the singular char-
acteristic equations, which are less than unity, are constructed just as those in [7]. As a result, we obtain

Vj1 (M, t) = 
1

aj
 ∫

S
∫ 

1

r
 erfc 





raj

2 √ t




 µj1 (N) dsN , (19)

Wj1 (M, t) = − 
16

√π
 ∫

S
∫ 

1

r
2 
∂r

∂nN

 







raj

2 √ t
 exp 




− 

r
2
aj

2

4t




 + 
√π

2
 erf 





raj

2 √ t











 µj2 (N) dsN , (20)

where erf and erfc are, respectively, the probability integral and the additional probability integral [14].
We represent the regular terms of the solutions by the sum of the thermal potentials of the single and double

layers and the volume

Tj2 (M, t) = aj2 (M, t) + Vj2 (M, t) + Wj2 (M, t) + Uj2 (M, t) , (21)

where aj2(M, t) are the known functions determined by the form of external thermal actions and satisfying the homo-
geneous heat-conduction equation; here, a02(M, t) → 0 as M → ∞:

Vj2 (M, t) = ∫ 
0

t

dτ ∫
S
∫ µj1

(2)
 (N, τ) Kj1 (M, N, t, τ) dsN ,

Wj2 (M, t) = ∫ 
0

t

dτ ∫
S
∫ µj2

(2)
 (N, τ) Kj2 (M, N, t, τ) dsN ,

Wj2 (M, t) = − ∫ 
0

t

fj (N, τ) Kj1 (M, N, t, τ) dsN ,

µj1
(2)(N, τ) and µj2

(2)(N, τ) are the unknown densities. It has been allowed for in (21) that the thermal potential of the
volume with a density f(N, τ) satisfies the inhomogeneous heat-conduction equation (1) ([12, p. 260]).

Satisfying the mating conditions at the points of smoothness (3) with (17)–(21) and using formulas (9), (13),
and (15), we arrive at the system of integral equations in which we set, in view of the arbitrariness of the densities,

µ01
(2)

 (N, τ) = µ11
(2)

 (N, τ) ,   µ02
(2)

 (N, τ) = µ12
(2)

 (N, τ) . (22)

As a result, we obtain the system of integral equations
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− 4πµ02
(2)

 (M, t) + ∫ 
0

t

dτ ∫
S
∫ µ01

(2)
 (N, τ) [K01 (M, N, t, τ) − K11 (M, N, t, τ)] dsN +

+ ∫ 
0

t

dτ ∫
S
∫ µ02

(2)
 (N, τ) [K02 (M, N, t, τ) − K12 (M, N, t, τ)] dsN = g (M, t) ,

− 2π (λ0 + λ1) µ01
(2)

 (M, t) + ∫ 
0

t

dτ ∫
S
∫ µ01

(2)
 (N, τ) 




λ0 

∂
∂n

 K01 (M, N, t, τ) − λ1 
∂
∂n

 K11 (M, N, t, τ)

 dsN +

+ ∫ 
0

t

dτ ∫
S
∫ µ02

(2)
 (N, τ) 




λ0 

∂
∂n

 K02 (M, N, t, τ) − λ1 
∂
∂n

 K12 (M, N, t, τ)



 dsN = h (M, t) ,

(23)

where

g (M, t) = − T01
−

 (M, t) − a02
−

 (M, t) − U0 (M, t) + T11
+

 (M, t) + a12
+

 (M, t) + U1 (M, t) ;

h (M, t) = − λ0 
∂
∂n

 [T01
−

 (M, t) + a02
−

 (M, t) + U0 (M, t)] + λ1 
∂
∂n

 [T11
+

 (M, t) + a12
+

 (M, t) + U (M, t)] .

The right-hand sides of the integral equations (23) are continuous functions on S due to the realization of
mating conditions at the singular points (4), and their kernels are continuous at the points of smoothness of the mating
surface S. Therefore, the system of equations (23) has the character of Volterra integral equations in the variable t and
the character of Fredholm equations in Cartesian coordinates [15, 16]. Such a system is unconditionally solvable and
has the analytical solution obtained, for example, by the method of successive approximations ([16, p. 485]).

To completely solve the problem we must add the condition of thermal balance in the regions containing sin-
gularities of the interface of media:

∫
S0

∫ (grad T, n) ds = 0 , (24)

where the surface S0, in the case of a conic point, is a sphere with its center at this point and, in the case of a sin-
gular line, is a closed surface covering the line mentioned.

As an example, we study the heat conduction of a body containing a circular conic inclusion bounded by the
surfaces

x
2

a
2
 + 

y
2

a
2
 − 
(z + c)2

c
2  = 0 ,

z = 0 (25)

in sudden heating of the composite by the quantity ∆T (Fig. 1). First we solve the auxiliary problem in a three-dimen-
sional space

∇ 2
T − a0

2
 
∂T

∂t
 = 0 ,   a0

2
 = 

1
κ0

(26)

with the initial condition
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T (x, y, z, t) t=0 = ∆T . (27)

Applying the Laplace transformation to (26) with account for (27), we obtain the equation

∇ 2
T
__

 − k
2
T
__

 = − 
1
κ0

 ∆T ,   k = √ p
κ0

 , (28)

whose solution has the form [9]

T
__

 = 
∆T

4πκ0
 ∫∫∫ 

V

R
−1

 exp (− kR) dξdηdχ ,   R = √(x − ξ)2 + (y − η)2 + (z − χ)2 . (29)

Evaluating the integral (29) and recovering the original function, we find the explicit expression for the auxiliary tem-
perature field

T (r, t) = ∆T 




r
√πκ0t

 exp 



− 

r
2

4κ0t




 − H (t) + erfc 



r
2 √κ0t








 , (30)

where H(t) is the Heaviside function.
We represent the temperature fields in the form (17)–(20), where the singular components have the form (18),

and construct the densities according to the distributions (given in [1]) of the components of the heat-flux density and
the temperature. In accordance with the formulas of the singular components [7], with the use of the notation adopted
in [7], and with account for the equations of the circular-cone surfaces S1 and S2 (S0 B S2), we have

R0 (M) = R1 (M) = (z2
 + 0.25 (x2

 + y
2
 − a

2
 (z + c) c−1)2 (x2

 + y
2)−1)1

 ⁄ 2 , (31)

U (M) = arcsin (z ⁄ Rc (M)) ,   Rc (M) = (x2
 + y

2
 + (z + c)2)1

 ⁄ 2 ,

Uc (M) = arcsin (sin θ0 (x2
 + y

2)1
 ⁄ 2 + (cos θ0 − c) (z + c)) Rc

−1
 (M) , (32)

where θ0 = arctan (a/c).
The value of the index of singularity of the heat-flux density in the vicinity of the singular line has the form [1]

m = 
π

2π − ω
 .

Here ω is the slope of the generator of the cone to the base. The singular characteristic equation determining the order
of singularity of the heat-flux density in the vicinity of the vertex of the circular cone has the form [1, 2]

Fig. 1. Geometric diagram of a circular conic inclusion.
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Pmc
 (cos θ4) = 0 ,

where Pmc
 is the Legendre function; θ4 = θ1 + β; tan β = c/a; the roots of this equation are tabulated [17].

The external nonstationary thermal action is represented according to formula (30): a02(x, y, z, t) = T(r, t).

Substituting (18)–(21), (31), and (32) into boundary conditions (3), we arrive at the system of integral equations (23).

In constructing the solution in iterative form, we assumed that γ = 
λ0

λ1
 = 0.8 (composite of the carbon steel–nickel type

[18]) and took five iterations, which gave an error of 4.5%.
In view of the geometric (circular cone) and thermal symmetry of the problem (sudden heating by ∆T), we

assume that the unknown coefficients C01, C02, and C1 of the densities of the singular components of the temperature
fields are constant. When thermal-balance condition (24) is fulfilled at the conic point and on the singular line we ob-
tain the system of linear algebraic equations

A1C01C1 + B1C02C1 = D1 ,   A2C01C1 + B2C02C1 = D2 ,

where the quantities Aq = Aq(a, c, ∆T, t), Bq = Bq(a, c, ∆T, t), and Dq = Dq(a, c, ∆T0, t) (q = 1, 2
___

) depend on the
geometry of the inclusion, the time, and the heat load and are not given because of their cumbersomeness:

Formula (24) yields the explicit expression for the intensity factor of the heat-flux density in the vertex of the
conic inclusion:

k0 = C1 (C01 + C02) . (33)

Relations for the intensity factors of the heat-flux density in the vicinity of the singular line are given by the formulas [1]

k1 = λ0 (γ − 1) (C01 cos mθ1 + C02 sin mθ1) ⁄ (γ √2 ) ,

k2 = λ0 (1 − γ) (C01 sin mθ1 − C02 cos mθ1) ⁄ √2  ,
(34)

where we must replace C01 and C02 by C01C1 and C02C1 respectively.
At values of t satisfying the inequality r/√κ0t  ≤ 0.02, as follows from formula (30), we have T(r, t) C 0, i.e.,

the external thermal action is absent, which gives zero values of the coefficients of intensity of the heat flux according
to formulas (33) and (34).

The dependence of the relative intensity factors kp
 ⁄ kp

(0) (p = 1, 2
___

) for the instant of time determined by the
equality a/√κ0t  = 0.2 on the value of the slope ω of the generator to the base is shown in Fig. 2. The quantities
k1
(0) = λ0((γ − 1)/(γ/2))C02C1 and k2

(0) = λ0(1 – γ)C01C1/√2  are the factors of intensity of the heat-flux density in the
vicinity of the singular line for the slope of the generator of the cone to the base, equal to π/36.

Fig. 2. Relative intensity factors vs. slope ω of the generator to the base of the
cone at the instant of time determined by the equality a/√κ0t  = 0 .2:  1)
k1

 ⁄ k1
(0); 2) k2

 ⁄ k2
(0).
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Basic Results and Conclusions. We have obtained a closed solution of the problem of nonstationary heat-
conduction of a body with an uneven inclusion. It has been established that the distribution of the nonstationary tem-
perature field and the components of the vector of the heat-flux density in the vicinity of the singularities of the
interface of the media is identical to the corresponding distribution under stationary thermal actions.

The given example shows that, just as in the stationary case, the intensity of the heat-flux density in the vi-
cinity of the singularities of the interfaces of media is characterized by both the order of singularity and the factors of
intensity of the heat-flux density. Of primary importance is the order of singularity, and the intensity factors are a sig-
nificant characteristic for one and the same order.

NOTATION

a and −c, radius of the base and z coordinate of the vertex of the cone; k1 and k2, intensity factors of the
heat-flux density; l, radius of the tubular surface; p, complex number in the Laplace transform; T, temperature; t, time;
V0 and V1, regions occupied by the body and the inclusion; x, y, z, Cartesian coordinates of the point M; γ = λ0

 ⁄ λ1;
κ, thermal diffusivity; λ, thermal conductivity; µ1 and µ2, densities of the thermal potential of the single and double
layers; ρ, θ, s, local coordinates connected with the singular line; ρ1, θ1, s1, local coordinates connected with the conic
point. Subscripts: j = 0 and 1 refer to the regions V0 and V1 respectively.
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